
CASA Project – CNN for Face Recognition 

The goal of the project was to build a Convolutional Neural Network which can 

distinguish between 62 people from the private database we were given (GOTCHA DB). 

The original database consisted of 9 maps (types) of videos recorded in 9 different 

conditions. In the first 7 maps there was a video of each subject (62 in total), in the 8th and 9th 

maps there were videos of only 6 subjects. Duration of the videos varied around 4s and all of 

them were recorded at 60 frames per second. Using GOTCHA DB, new database, which 

consists of 62 folders, was created and used for the project. Name of each folder 

corresponded to the ID of one of the subjects, which made the labelling process easier. In 

every folder of the new database there are all the frames extracted from the original videos in 

which one particular subject appears (except the ones from maps 8 and 9), cropped in the 

way that only the face of the subject is visible.  

False positive and false negative detections were minimised using multiple 

haarcascade files, optimizing the parameters and using histogram equalization. One 

haarcascade file was used for detecting the face. Once the face was detected, we used another 

haarcascade file in order to search for the mouth in the area of the detected face. If the mouth 

was found, we would suggest we have detected a human face. Histogram equalization was 

necessary when extracting the frames from videos of subject 33, because of his darker skin 

tone. We were still left with a small number of false positive detections (faces on the shirts, 

pavement, ripped jeans), which we manually deleted. Final result was database which 

consists of 62, 355 images of 62 subjects. 

 

 

Figure 1. Structure of DB used for training, validation and testing 

 



 

Figure 2. Structure of the folder related to person one, the number x after mode_ represents the video from 

which the image was taken. 

Before using our images as inputs to the neural network, it was necessary to resize 

them, as we didn’t have enough of the computational power to load and work with images of 

the original size. We resized them to 102x102 pixels, aware of the fact that our neural 

network might work even better with images of the original size (512x512). Unfortunately, 

we weren’t able to test that assumption.  

The data also had to be reshaped and modelled in order to be used as an input to the 

CNN. After normalizing and transforming it, we had image 3D tensors (width * height * 

depth), which were used in convolutional layers to obtain a discriminant image “feature 

vector”. Image feature vectors and labels were used in deep layers for learning. 

 

Figure 3. Typical CNN structure 

 

The first idea was to use all of the 60 fps from all of the videos, but it resulted in 

overfitting the model, in fact, after just a couple of epochs, most of the images used for 

training and validation were pretty much the same. Although we randomly divided images in 

training e validation the redundancy of many similar images brought the model to train and 

validate on the same examples and so overfit. After experimenting with different rates, we 

decided to use the one of 10 fps, that happens to be, at the time of writing, the optimal rate. 



In the trials which follow, we tested the behaviour of the model when using different 

videos for training and validating, while always preserving one (usually 1st or 7th one) for 

testing. The result was too dependent on the choice we made when splitting videos in a group 

for training or validation, so the final decision was to use a set of videos for training and 

validation and one video for testing. In final model, frames from videos 2-7 for all of the 

subjects (at the rate of 10 fps) were used for training and validate the CNN. The data was 

shuffled and split in training (5551 images) and validation set (2379 images). Frames from 

the 1st video (3634 of them) were used for testing the model. 

Though our result was improving and the above mentioned option seemed the best 

possible one, we still had problems with overfitting. Finally, we applied the dropout 

regularization, and came up with the model with the following architecture: 

 

Layer (type)                 Output Shape              Param #    

================================================================= 

conv2d_7 (Conv2D)            (None, 100, 100, 32)      896        

_________________________________________________________________ 

max_pooling2d_7 (MaxPooling2 (None, 50, 50, 32)        0          

_________________________________________________________________ 

dropout_9 (Dropout)          (None, 50, 50, 32)        0          

_________________________________________________________________ 

conv2d_8 (Conv2D)            (None, 48, 48, 68)        19652      

_________________________________________________________________ 

max_pooling2d_8 (MaxPooling2 (None, 24, 24, 68)        0          

_________________________________________________________________ 

dropout_10 (Dropout)         (None, 24, 24, 68)        0          

_________________________________________________________________ 

conv2d_9 (Conv2D)            (None, 22, 22, 68)        41684      

_________________________________________________________________ 

max_pooling2d_9 (MaxPooling2 (None, 11, 11, 68)        0          

_________________________________________________________________ 

dropout_11 (Dropout)         (None, 11, 11, 68)        0          

_________________________________________________________________ 

flatten_3 (Flatten)          (None, 8228)              0          

_________________________________________________________________ 

dense_5 (Dense)              (None, 128)               1053312    

_________________________________________________________________ 

dropout_12 (Dropout)         (None, 128)               0          

_________________________________________________________________ 

dense_6 (Dense)              (None, 62)                7998       

================================================================= 

Total params: 1,123,542 

Trainable params: 1,123,542 

Non-trainable params: 0 

 

Additionally, we tested different kinds of optimizers. Although ‘adam’ was often 

mentioned in the literature, we had the best results when using ‘rmsprop’, so we kept it in the 

final model. We limited the number of epochs to 100, which is not a big number, but both 

accuracy and loss seemed to have almost constant value after less than 40 epochs. 

With the presented model, we achieved a 99% accuracy for training, 96% for 

validation and 86% for testing. Training and validation accuracy and loss can be seen on the 

graphs. 



 

Figure 4. Final model accuracy 

 

 

Figure 5. Final model loss 

 

 

For experimenting purposes, we also tested the version were the model was trained 

and validated on frames from only the 7th, 3D video, and afterwards tested on remaining 6 

videos, but we came to conclusion that 7th video didn’t have enough information of the 

subjects to be able to generalize to all other conditions, or that our model was too simple for 

such experiment. In this case, we had the testing accuracy of 25%, which is more than 

random guessing, but still a lot less than expected. 

Finally, we prepared the function for saving the models (neuron weights) we tested 

and the function for saving predictions on unlabelled data as .cvs file. The .cvs file created for 

the final model showed us some interesting trends. For example, the model was often 

identifying person 29 as person 8, but never vice versa.  



In order to be able to test the model with one, unlabelled image, we created the 

prediction model, which allows the user to load one image by searching for it in the file 

explorer and then it outputs the prediction of it by printing out the top five IDs it predicted, 

along with the possibilities for each of them. 

In order to further improve our result, we suggest using more images, adding new 

subjects, using bigger images and maybe use a more complex model which requires bigger 

computational power. 

 


